Framework of Channel Estimation for Hybrid Analog-and-Digital Processing Enabled Massive MIMO Communications
نویسندگان
چکیده
We investigate a general channel estimation problem in the massive multiple-input multiple-output (MIMO) system which employs the hybrid analog/digital precoding structure with limited radio-frequency (RF) chains. By properly designing RF combiners and performing multiple trainings, the proposed channel estimation can approach the performance of fullydigital estimations depending on the degree of channel spatial correlation and the number of RF chains. Dealing with the hybrid channel estimation, the optimal combiner is theoretically derived by relaxing the constant-magnitude constraint in a specific singletraining scenario, which is then extended to the design of combiners for multiple trainings by Sequential and Alternating methods. Further, we develop a technique to generate the phase-only RF combiners based on the corresponding unconstrained ones to satisfy the constant-magnitude constraints. The performance of the proposed hybrid channel estimation scheme is examined by simulations under both nonparametric and spatial channel models. The simulation results demonstrate that the estimated CSI can approach the performance of fully-digital estimations in terms of both mean square error and spectral efficiency. Moreover, a practical spatial channel covariance estimation method is proposed and its effectiveness in hybrid channel estimation is verified by simulations.
منابع مشابه
Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system
Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems. In this paper, we propose a semi-blind downlink channel estimation method for massive MIMO system. We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...
متن کاملChannel Estimation and Training Design for Hybrid Analog-Digital Multi-Carrier Single-User Massive MIMO Systems
In this paper we study the channel estimation problem for a CP-OFDM based hybrid analog-digital massive MIMO system. In contrast to a conventional MIMO system, two additional constraints need to be fulfilled. First, the analog precoding is achieved using only a phase shift network, which imposes constant modulus constraints on the elements of the RF precoding and decoding matrices. Second, ther...
متن کاملSubspace Tracking Algorithms for Millimeter Wave MIMO Channel Estimation with Hybrid Beamforming
This paper proposes the use of subspace tracking algorithms for performing MIMO channel estimation at millimeter wave (mmWave) frequencies. Using a subspace approach, we develop a protocol enabling the estimation of the right (resp. left) singular vectors at the transmitter (resp. receiver) side; then, we adapt the projection approximation subspace tracking with deflation (PASTd) and the orthog...
متن کاملMassive MIMO systems at millimeter-wave Beamforming design and channel estimation Studente
Millimeter-wave (MMW) is a probable technology for the future cellular systems. Its main challenge is achieving sufficient operating link margin, and directional beamforming with large antenna arrays may be a viable approach. With bandwidths on the order of gigahertz, high-resolution analog-to-digital converters are a power consumption bottleneck. One solution is to employ an hybrid implementat...
متن کاملMassive MIMO with 1-bit ADC
We investigate massive multiple-input-multipleoutput (MIMO) uplink systems with 1-bit analog-to-digital converters (ADCs) on each receiver antenna. Receivers that rely on 1-bit ADC do not need energy-consuming interfaces such as automatic gain control (AGC). This decreases both ADC building and operational costs. Our design is based on maximal ratio combining (MRC), zero-forcing (ZF), and least...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.08846 شماره
صفحات -
تاریخ انتشار 2017